焦点(p/2,0)
若AB斜率不存在
则垂直x轴,是x=p/2
则x1=x2=p/2
x1x2=p^2/4
y^2=2px=p^2
所以y1y2=-p^2
若斜率存在
则y-0=k(x-p/2)
代入抛物线
k^2(x-p/2)^2=2px
k^2x^2-(pk^2+2p)x+k^2p^2/4=0
x1x2=(k^2p^2/4)/k^2=p^2/4
x1+x2=(pk^2+2p)/k^2
y1=k(x1-p/2),y2=k(x2-p/2)
所以y1y2=k^2[x1x2-p/2*(x1+x2)+p^2/4]=k^2*[p^2/4-p/2*(pk^2+2p)/k^2+p^2/4]
=k^2(p^2/2-p^2/2-p^2/k^2)
=-p^2
综上
x1x2=p^2/4
y1y2=-p^2