如图,在△ABC中,角ABC=45°,CD⊥AB

1个回答

  • (1)∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.在Rt△DFB和Rt△DAC中,∵∠DBF=90°-∠BFD,∠DCA=90°-∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴Rt△DFB≌Rt△DAC.∴BF=AC;(2)在Rt△BEA和Rt△BEC中∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC.∴CE=AE= 1/2AC.又由(1),知BF=AC,∴CE= 1/2AC= 1/2BF;(3)CE<BG.证明:连接CG.∵△BCD是等腰直角三角形,∴BD=CD又H是BC边的中点,∴DH垂直平分BC.∴BG=CG在Rt△CEG中,∵CG是斜边,CE是直角边,∴CE<CG.∴CE<BG.