解题思路:由a-b+c=0求得b=a+c,将其代入方程ax2+bx+c=0中,可得方程的一个根是-1.
∵a-b+c=0,
∴b=a+c,①
把①代入方程ax2+bx+c=0中,
ax2+(a+c)x+c=0,
ax2+ax+cx+c=0,
ax(x+1)+c(x+1)=0,
(x+1)(ax+c)=0,
∴x1=-1,x2=-[c/a](非零实数a、b、c).
故选:B.
点评:
本题考点: 一元二次方程的解.
考点点评: 本题考查的是一元二次方程的根,由题目中所给条件代入方程可以求出方程的两个根,其中有一个准确的根x=-1.