设CD=[2/9],则2×[2/9]+DE=2,解得DE=[14/9],∴CE=CD+DE=
16
9.
∵AC与圆O相切于点A,∴AC⊥AB,AC2=CD•CE=[2/9×
16
9]=[32/81].
∴AD2=AC2+CD2=[32/81+
4
81=
36
81],解得AD=
2
3.
∵CE∥AB,∴
AD=
BE,∴BE=AD=[2/3].
故答案为[2/3].
设CD=[2/9],则2×[2/9]+DE=2,解得DE=[14/9],∴CE=CD+DE=
16
9.
∵AC与圆O相切于点A,∴AC⊥AB,AC2=CD•CE=[2/9×
16
9]=[32/81].
∴AD2=AC2+CD2=[32/81+
4
81=
36
81],解得AD=
2
3.
∵CE∥AB,∴
AD=
BE,∴BE=AD=[2/3].
故答案为[2/3].