设直线与抛物线交于(x1,y1),(x2,y2)两点.
y=x代入抛物线方程,整理,得x^2-2px=0,x1、x2是方程的两根.
x(x-2p)=0
x1=0 x2=2p
y1=0 y2=2p
弦长=√[(x1-x2)^2+(y1-y2)^2]
=√[(2p-0)^2+(2p-0)^2]
=2√2|p|=√2
|p|=1/2
p=1/2或p=-1/2.
设直线与抛物线交于(x1,y1),(x2,y2)两点.
y=x代入抛物线方程,整理,得x^2-2px=0,x1、x2是方程的两根.
x(x-2p)=0
x1=0 x2=2p
y1=0 y2=2p
弦长=√[(x1-x2)^2+(y1-y2)^2]
=√[(2p-0)^2+(2p-0)^2]
=2√2|p|=√2
|p|=1/2
p=1/2或p=-1/2.