说明:如果y不是关于x的函数,解法如下.
设x=ytant,则sint=x/√(x²+y²),cost=y/√(x²+y²),dx=ysec²tdt
于是,有
∫1/(y²+x²)^3/2 dx=∫ysec²tdt/(y³sec³t)
=1/y²∫costdt
=sint/y²+C (C是积分常数)
=(x/√(x²+y²))/y²+C
=x/(y²√(x²+y²))+C;
∫x/(y^2+x^2)^3/2 dx=∫ytantysec²tdt/(y³sec³t)
=1/y∫sintdt
=-cost/y+C (C是积分常数)
=-(y/√(x²+y²))/y+C
=-1/(√(x²+y²))+C.