∵四边形ABMO是圆内接四边形,∠BMO=120°,
∴∠BAO=60°,
∵AB是⊙C的直径,
∴∠AOB=90°,
∴∠ABO=90°-∠BAO=90°-60°=30°,
∵点A的坐标为(0,3),
∴OA=3,
∴AB=2OA=6,
∴⊙C的半径长=
AB
2 =3.
故答案是:3.
∵四边形ABMO是圆内接四边形,∠BMO=120°,
∴∠BAO=60°,
∵AB是⊙C的直径,
∴∠AOB=90°,
∴∠ABO=90°-∠BAO=90°-60°=30°,
∵点A的坐标为(0,3),
∴OA=3,
∴AB=2OA=6,
∴⊙C的半径长=
AB
2 =3.
故答案是:3.