f(x)=ax^3+bx^2+cx
若函数f(x)=ax^3+bx^2+cx在x=正负1处取得极值,且在x=0处的切线斜率为-3,求若过点A(2,m)可做曲线y=f(x)若过点A(2,m)可做曲线y=f(x)的三条切线,求实数m的取值范围
f‘(x) = 3ax^2+2bx+c
在x=正负1处取得极值:
f'(1)=0,f'(-1)=0
3a+2b+c=0
3a-2b+c=0
解得b=0,c=-3a
f(x) = ax^3 - 3ax
f‘(x) = 3ax^2 - 3a
在x=0处的切线斜率为-3
f'(0) = -3
-3a=-3
a=1
f(x) = x^3 - 3x
f‘(x) = 3x^2 - 3 = 3(x+1)(x-1)
x<-1时,f(x)单调增;-1<x<1时,单调减;x>1时单调增
又:f''(x)=6x
f''(0)=0,x=0为拐点
x<0时,f''(x)<0,上凸;
x>0时,f''(x)>0,下凹
x=2在f(x(的下凹段
所以点A(2,m)b必须在点f(2)下方时才能做f(x)的三条切线
即m<f(2)=2^3-3*2=2
∴m∈(-∞,2)