令[x(y+z-x)]/lgx = [y(z+x-y)]/lgy =[z(x+y-z)]/lgz=a
lg函数要求x>0、y>0、z>0;同时y+z-x≠0、z+x-y≠0、x+y-z≠0,否则,若有任何一个为0,则全部为0,即y+z-x=z+x-y=x+y-z=0,容易解出x=y=z=0,矛盾.因此a≠0.
x(y+z-x) = a·lgx (1)
y(z+x-y) = a·lgy (2)
z(x+y-z) = a·lgz (3)
(1)*y+(2)*x,得:
xy(y+z-x)+xy(z+x-y) = ay·lgx+ax·lgy
即:y·lgx+x·lgy = 2xyz/a
x^y·y^x = 10^(2xyz/a)
同理,y^z·z^y = 10^(2xyz/a),x^z·z^x = 10^(2xyz/a)
x^y·y^x = y^z·z^y = x^z·z^x