(3x^2+kx+2k)/(x^2+x+2)>2
分母=(x+1/2)^2+3/4>0
所以两边乘分母不等号不变
3x^2+kx+2k>2x^2+2x+4
x^2+(k-2)x+(2k-4)>0
因为x∈R
所以不等式恒成立
所以x^2+(k-2)x+(2k-4)和x轴没有交点
所以判别式小于0
(k-2)^2-4(2k-4)
(3x^2+kx+2k)/(x^2+x+2)>2
分母=(x+1/2)^2+3/4>0
所以两边乘分母不等号不变
3x^2+kx+2k>2x^2+2x+4
x^2+(k-2)x+(2k-4)>0
因为x∈R
所以不等式恒成立
所以x^2+(k-2)x+(2k-4)和x轴没有交点
所以判别式小于0
(k-2)^2-4(2k-4)