(1)
因为PB=PC
所以∠PBC=∠PCB
又∠ABC=∠DBC=90°
所以∠ABP=∠DCP
又AB=CD,PB=PC
所以△APB≌△DPC
(2)
取BC中点N,AC中点O,连接OP延长交AD于M
因为ON‖AB,ON⊥BC,PC=PB
所以PN为BC垂直平分线
M、O,P,N共线
因为AP=AB=AD
所以MA=AP/2
所以RT△PMA中,∠MPA=∠BAP=30°
所以∠PAC=∠BAC-∠BAP=∠45°-30°=15°
所以∠PAC=1/2*∠BAP
(3)
设∠PAC=x°,∠BAP=y°
因为△APB≌△DPC
所以PA=PD=AB=AD=CD,∠PDC=∠BAP
所以PAD为等边△
则∠CAD=∠DCA=(60-x)°,∠PDC=y°
而∠PAC+∠APD=∠PDC+∠DCA
即 x°+60°=y°+(60-x)°,x°=y°/2
所以∠PAC=1/2*∠BAP