解题思路:将若干个小正方体,摆成一个大正方体,那么这个正方体的每个棱长上至少有2个小正方体,由此即可计算得出小正方体的总个数.
根据小正方体拼组大正方体的特点可知:将若干个小正方形,摆成一个大正方体,那么这个正方体的每个棱长上至少有2个小正方体,
所以组成的这个大正方体中,小正方体的个数至少有2×2×2=8(个).
故答案为:8.
点评:
本题考点: 简单的立方体切拼问题.
考点点评: 此题考查了小正方体拼组大正方体的方法的灵活应用:大正方体的每个棱长上小正方体的个数的三次方,就是组成这个大正方体的小正方体的个数总和.