y=cos(x/2-30°)-sin(x/2-30°)
=sin(120°-x/2)-sin(x/2-30°) 公式:sinx-siny=2cos((x+y)/2)*sin((x-y)/2)
=2cos45°sin[(120°-x/2-x/2+30°)/2]
=2cos45°sin(75°-x)
=-√2sin(x-75°)
=-√2sin(x-15π/36)
所以:
递增区间为:2kπ+π/2
y=cos(x/2-30°)-sin(x/2-30°)
=sin(120°-x/2)-sin(x/2-30°) 公式:sinx-siny=2cos((x+y)/2)*sin((x-y)/2)
=2cos45°sin[(120°-x/2-x/2+30°)/2]
=2cos45°sin(75°-x)
=-√2sin(x-75°)
=-√2sin(x-15π/36)
所以:
递增区间为:2kπ+π/2