∵BP、CP分别平分∠ABC、∠ACB,
∴∠PBC=1/2∠ABC,∠PCB=1/2∠ACB,
∴∠PBC+∠PCB=1/2(∠ABC+∠ACB)=1/2(180°-∠A)
=90°-1/2∠A,
∴∠P=180°-(∠PBC+∠PCB)
=180°-(90°-1/2∠A)
=90°+1/2∠A.
当∠A=80°时,∠P=90°+40°=130°.
∵BP、CP分别平分∠ABC、∠ACB,
∴∠PBC=1/2∠ABC,∠PCB=1/2∠ACB,
∴∠PBC+∠PCB=1/2(∠ABC+∠ACB)=1/2(180°-∠A)
=90°-1/2∠A,
∴∠P=180°-(∠PBC+∠PCB)
=180°-(90°-1/2∠A)
=90°+1/2∠A.
当∠A=80°时,∠P=90°+40°=130°.