tan(arctanx1+arctanx2) =(x1+x2)/(1-x1x2) =sin(π/5)/[1-cos(π/5)] =sin(π/5)/[2sin^2(π/10)] =2sin(π/10)cos(π/10)/[2sin^2(π/10)] =cot(π/10) arctanx1+arctanx2=π/2-π/10=2π/5.
若x1,x2是方程x^2-xsinπ/5+cosπ/5=0的两个根,求证arctanx1+arctanx2=2π/5
1个回答
相关问题
-
设X1,X2是方程x2-xsin(π/5)+cos(π/5)=0的两根,则arctanx1+arctanx2的值是?
-
设X1、X2是方程X^2-Xsin(π/5)+cos(4π/5)=0的两根,求arctanx1+arctanx2的值
-
求limx→∞(π/2-arctanx)/0.5x?
-
limx→+∞(π/2-arctanx)^1/x
-
证明 1 当x>0 arctanx+1/x>π/2
-
当x>0时,证明:arctanx+1/x>π/2,
-
lim (π-2arctanx) / In(1+ 1/x ) x→∞
-
X^2-Xsin(π/5)+cos(4π/5)=0不给过程不要紧,
-
lim(π/2arctanx)^x
-
cos(2x-π)/[根号2cos(x+π/4)]=-1/5,0