观察下列各式:1²+(1*2)²+2²=9=3²2²+(2*3)&su

1个回答

  • 1^2+(1*2)^2+2^2=9=3^2

    2^2+(2*3)^2+3^2=49=7^2

    3^2+(3*4)^2+4^2=169=13^2

    (1)请写出第五个等式

    5^2+(5*6)^2+6^2=961=31^2

    (2)你发现了什么规律?用含有n的等式表示出来.(n为正整数)

    n^2 + [n*(n+1)]^2 + (n+1)^2 = [n*(n+1)+1]^2

    很明显等式成立.

    因为右式[n*(n+1)+1]^2展开为

    [n*(n+1)+1]^2 = [n*(n+1)]^2 +2n(n+1) +1

    = [n*(n+1)]^2 +2n^2+2n +1

    = [n*(n+1)]^2 +(n^2+2n +1)+n^2

    = [n*(n+1)]^2 +(n+1)^2+n^2

    = 左式