lim(x→∞)[(x+4)/(x+2)]^x=lim(x→∞)[1+2/(x+2)]^x
=lim(x→∞)[1+2/(x+2)]^[(x+2)/2*2x/(x+2)]
={lim(x→∞)[1+2/(x+2)]^[(x+2)/2]}^[2x/(x+2)]
=e^lim(x→∞)[2x/(x+2)]
=e^lim(x→∞)[2/(1+2/x)]
=e^[2/(1+0)]
=e²
lim(x→∞)[(x+4)/(x+2)]^x=lim(x→∞)[1+2/(x+2)]^x
=lim(x→∞)[1+2/(x+2)]^[(x+2)/2*2x/(x+2)]
={lim(x→∞)[1+2/(x+2)]^[(x+2)/2]}^[2x/(x+2)]
=e^lim(x→∞)[2x/(x+2)]
=e^lim(x→∞)[2/(1+2/x)]
=e^[2/(1+0)]
=e²