1/(sinx)^2 - 1/x^2在趋于0时为1/3,我用罗必塔法则算出怎么是0啊?

1个回答

  • 不能确定你的问题出在哪里,需要帮忙检查的话请追问附上过程.

    以下是用洛必达的做法:

    lim{x → 0} 1/(sin²(x))-1/x²

    = lim{x → 0} (x²-sin²(x))/(x²sin²(x))

    = (lim{x → 0} (x²-sin²(x))/x⁴)/(lim{x → 0} sin(x)/x)²

    = lim{x → 0} (x²-sin²(x))/x⁴ (重要极限lim{x → 0} sin(x)/x = 1)

    = lim{x → 0} (2x-2sin(x)cos(x))/(4x³) (0/0型,洛必达)

    = lim{x → 0} (2-2cos²(x)+2sin²(x))/(12x²) (0/0型,洛必达)

    = lim{x → 0} sin²(x)/(3x²)

    = (lim{x → 0} sin(x)/x)²/3

    = 1/3 (重要极限lim{x → 0} sin(x)/x = 1).

    用Taylor展开也可以:

    ∵cos(t) = 1-t²/2+t⁴/24+o(t⁴),

    ∴sin²(x) = (1-cos(2x))/2 = (2x)²/4-(2x)⁴/48+o(x⁴) = x²-x⁴/3+o(x⁴),

    ∴x²-sin²(x) = x⁴/3+o(x⁴),即(x²-sin²(x))/x⁴ = 1/3+o(1) → 1/3.

    再由上面已证lim{x → 0} 1/(sin²(x))-1/x² = lim{x → 0} (x²-sin²(x))/x⁴ = 1/3.