已知,图①中,P是三角形ABC中角B和角C的平分线的交点;图②中,P是三角形ABC中角B的平分线与三角形ABC的外角角A

1个回答

  • 图①中,∠P=90°+½∠A.

    证明:在△BPC中∠P=180°-½﹙∠A BC+∠ACB﹚=180º﹣½﹙180°-∠A﹚=90°+∠A.

    图②中,∠P=½∠A.

    证明:在△BPC中,

    ∠P=180°-½﹙∠ABC+ACE﹚-∠ACB

    = 180°-½[∠ABC+﹙∠ABC+∠A﹚]-﹙180°-∠ABC-∠A﹚

    =180°-½[2∠ABC+∠A]﹣180°+∠ABC+∠A

    =180°-∠ABC-½∠A﹣180°+∠ABC+∠A

    =½∠A.

    图③中,∠P=90°-½∠A

    证明:在△BPC中,

    ∠P= 180°-½﹙∠FBC+∠ECB﹚= 180°-½﹙180°-∠ABC+180°-∠ACB﹚

    =180°-½[360°-﹙∠ABC+∠ACB﹚]

    =180°-½[360°-﹙180°-∠A﹚]

    =180°-½[180°+∠A﹚]

    =90-½∠A﹚