图①中,∠P=90°+½∠A.
证明:在△BPC中∠P=180°-½﹙∠A BC+∠ACB﹚=180º﹣½﹙180°-∠A﹚=90°+∠A.
图②中,∠P=½∠A.
证明:在△BPC中,
∠P=180°-½﹙∠ABC+ACE﹚-∠ACB
= 180°-½[∠ABC+﹙∠ABC+∠A﹚]-﹙180°-∠ABC-∠A﹚
=180°-½[2∠ABC+∠A]﹣180°+∠ABC+∠A
=180°-∠ABC-½∠A﹣180°+∠ABC+∠A
=½∠A.
图③中,∠P=90°-½∠A
证明:在△BPC中,
∠P= 180°-½﹙∠FBC+∠ECB﹚= 180°-½﹙180°-∠ABC+180°-∠ACB﹚
=180°-½[360°-﹙∠ABC+∠ACB﹚]
=180°-½[360°-﹙180°-∠A﹚]
=180°-½[180°+∠A﹚]
=90-½∠A﹚