由题意不妨构造数列{bn},使得bn=a(n+1)/an
则由a1=1.a2=2得:bn=2
[a(n+1)+an]/an=[a(n+2)-a(n+1)]/an+1
所以(bn) +1=b(n+1) -1
即b(n+1) -bn=2
易知数列{bn}是首项为2,公差为2的等差数列
则bn=b1 +(n-1)*2=2n
又(b1)*(b2)*(b3)*...*[b(n-1)]*(bn)
=[(a2)/(a1)]*[(a3)/(a2)]*[(a4)/(a3)]*...*[(an)/a(n-1)][a(n+1)/(an)]
=a(n+1)/a1
所以a(n+1)/a1
=(b1)*(b2)*(b3)*...*[b(n-1)]*(bn)
=2*4*6*...*(2n)
=(2的n次方)*n!(注:其中 n!=1*2*3*...*n,它是指从1连乘到n的积,称为n的阶乘)
则a2011=a1*(2的2010次方)*2010!=(2的2010次方)*2010!