lim(x->1) (1-x)/(1-x^(1/3))
=lim(x->1) (1-x)(1+x^(1/3)+x^(2/3))/(1-x^(1/3))(1+x^(1/3)+x^(2/3))
=lim(x->1) (1-x)(1+x^(1/3)+x^(2/3))/(1-x)
=lim(x->1) (1+x^(1/3)+x^(2/3))
=1+1+1
=3
所以
同阶但不等价.
lim(x->1) (1-x)/(1-x^(1/3))
=lim(x->1) (1-x)(1+x^(1/3)+x^(2/3))/(1-x^(1/3))(1+x^(1/3)+x^(2/3))
=lim(x->1) (1-x)(1+x^(1/3)+x^(2/3))/(1-x)
=lim(x->1) (1+x^(1/3)+x^(2/3))
=1+1+1
=3
所以
同阶但不等价.