填空或解答:点B、C、E在同一直线上,点A、D在直线CE的同侧,AB=AC,EC=ED,∠BAC=∠CED,直线AE、B

1个回答

  • (1)∵AB=AC,EC=ED,∠BAC=∠CED=60°,

    ∴△ABC ∽ △EDC,

    ∴∠CBD=∠CAE,

    ∴∠AFB=180°-∠CAE-∠BAC-∠ABD

    =180°-∠BAC-∠ABC

    =∠ACB,

    ∴∠AFB=60°,

    同理可得:∠AFB=45°;

    (2)∵AB=AC,EC=ED,∠BAC=∠CED,

    ∴△ABC ∽ △EDC,

    ∴∠ACB=∠ECD,

    BC

    DC =

    AC

    EC ,

    ∴∠BCD=∠ACE,

    ∴△BCD ∽ △ACE,

    ∴∠CBD=∠CAE,

    ∴∠AFB=180°-∠CAE-∠BAC-∠ABD,

    =180°-∠BAC-∠ABC=∠ACB,

    ∵AB=AC,∠BAC=α,

    ∴∠ACB=90°-

    1

    2 α ,

    ∴∠AFB=90°-

    1

    2 α .

    故答案为:∠AFB=90° -

    1

    2 α .

    (3)图4中:∠AFB=90° -

    1

    2 α ;

    图5中:∠AFB=90°+

    1

    2 α .

    ∠AFB=90° -

    1

    2 α 的证明如下:

    ∵AB=AC,EC=ED,∠BAC=∠CED,

    ∴△ABC ∽ △EDC,

    ∴∠ACB=∠ECD,

    BC

    DC =

    AC

    EC ,

    ∴∠BCD=∠ACE,

    ∴△BCD ∽ △ACE,

    ∴∠CBD=∠CAE,

    ∴∠AFB=180°-∠CAE-∠BAC-∠ABD,

    =180°-∠BAC-∠ABC=∠ACB,

    ∵AB=AC,∠BAC=α,

    ∴∠ACB=90°-

    1

    2 α ,

    ∴∠AFB=90°-

    1

    2 α .

    ∠AFB=90°+

    1

    2 α 的证明如下:

    ∵AB=AC,EC=ED,∠BAC=∠CED,

    ∴△ABC ∽ △EDC,

    ∴∠ACB=∠ECD,

    BC

    DC =

    AC

    EC ,

    ∴∠BCD=∠ACE,

    ∴△BCD ∽ △ACE,

    ∴∠BDC=∠AEC,

    ∴∠AFB=∠BDC+∠CDE+∠DEF,

    =∠CDE+∠CED=180°-∠DCE,

    ∵AB=AC,EC=ED,∠BAC=∠DEC=α,

    ∴∠DCE=90°-

    1

    2 α ,

    ∴∠AFB=180°-(90°-

    1

    2 α )=90°+

    1

    2 α .