(1)由余弦定理cosC=(a^2+b^2-C^2)/2ab=-√2/2,C=3π/4,
(2)cosAcosB-sinAsinB=cos(A+B)=cosC=√2/2
sinAsinB= √2/10,
(cosαcosA-sinαsinA)(cosαcosB-sinαsinB)/cos^2α=(cosA-sinAtanα)(cosB-sinBtanα)
=cosAcosB-(sinAcosB+cosAsinB)tanα+sinAsinBtan^2α
即3√2/5-√2/2tanα+√2/10tan^2α=√2/5
解方程得tanα=1,tanα=4