证明:(1)左边= k
C kn =k•
n!
k!(n-k)! =
n!
(k-1)!(n-k)! ,
右边= n•
(n-1)!
(k-1)!(n-k)! =
n!
(k-1)!(n-k)! ,
所以 k
C kn =n
C k-1n-1 ;
(2)由题意得数列a 0,a 1,a 2,…为等差数列,且公差为a 1-a 0≠0.
则 p(x)= a 0
C 0n (1-x ) n + a 1
C 1n x(1-x ) n-1 + a 2
C 2n x 2 (1-x ) n-2 +…+ a n
C nn x n = a 0
C 0n (1-x ) n +[ a 0 +( a 1 - a 0 )]
C 1n x(1-x ) n-1 +…+[ a 0 +n( a 1 - a 0 )]
C nn x n = a 0 [
C 0n (1-x) n +
C 1n x (1-x) n-1 +…+
C nn x n ]+( a 1 - a 0 )[
C 1n x (1-x) n-1 +2
C 2n x 2 (1-x) n-2 +…+n
C nn x n ] = a 0 [(1-x)+x ] n +( a 1 - a 0 )nx[
C 0n-1 (1-x) n-1 +
C 1n-1 x (1-x) n-2 +…+
C n-1n-1 x n-1 ] = a 0 +( a 1 - a 0 )nx[x+(1-x) ] n-1 =a 0+(a 1-a 0)nx,
所以对任意的正整数n,p(x)是关于x的一次式.