(1)已知k、n∈N * ,且k≤n,求证: k C kn =n C k-1n-1 ;

1个回答

  • 证明:(1)左边= k

    C kn =k•

    n!

    k!(n-k)! =

    n!

    (k-1)!(n-k)! ,

    右边= n•

    (n-1)!

    (k-1)!(n-k)! =

    n!

    (k-1)!(n-k)! ,

    所以 k

    C kn =n

    C k-1n-1 ;

    (2)由题意得数列a 0,a 1,a 2,…为等差数列,且公差为a 1-a 0≠0.

    则 p(x)= a 0

    C 0n (1-x ) n + a 1

    C 1n x(1-x ) n-1 + a 2

    C 2n x 2 (1-x ) n-2 +…+ a n

    C nn x n = a 0

    C 0n (1-x ) n +[ a 0 +( a 1 - a 0 )]

    C 1n x(1-x ) n-1 +…+[ a 0 +n( a 1 - a 0 )]

    C nn x n = a 0 [

    C 0n (1-x) n +

    C 1n x (1-x) n-1 +…+

    C nn x n ]+( a 1 - a 0 )[

    C 1n x (1-x) n-1 +2

    C 2n x 2 (1-x) n-2 +…+n

    C nn x n ] = a 0 [(1-x)+x ] n +( a 1 - a 0 )nx[

    C 0n-1 (1-x) n-1 +

    C 1n-1 x (1-x) n-2 +…+

    C n-1n-1 x n-1 ] = a 0 +( a 1 - a 0 )nx[x+(1-x) ] n-1 =a 0+(a 1-a 0)nx,

    所以对任意的正整数n,p(x)是关于x的一次式.