答:
x√(1+y²)+yy'√(1+x²)=0
2yy'√(1+x²)=-2x√(1+y²)
(y²)'√(1+x²)=-2x√(1+y²)
(y²)' / [2√(1+y²)] = -(x²)' / [ 2√(1+x²)]
[ √(1+y²) ] ' = - [ √(1+x²) ]'
两边积分:
√(1+y²)= - √(1+x²)+C
所以:
√(1+y²)+ √(1+x²) = C
答:
x√(1+y²)+yy'√(1+x²)=0
2yy'√(1+x²)=-2x√(1+y²)
(y²)'√(1+x²)=-2x√(1+y²)
(y²)' / [2√(1+y²)] = -(x²)' / [ 2√(1+x²)]
[ √(1+y²) ] ' = - [ √(1+x²) ]'
两边积分:
√(1+y²)= - √(1+x²)+C
所以:
√(1+y²)+ √(1+x²) = C