arctan(x的平方)的积分

2个回答

  • ∫arctan(x^2)dx

    =xarctan(x^2)-∫x*1/(1+x^4)*2xdx

    =xarctan(x^2)-∫2x^2/(1+x^4)dx

    考虑∫2x^2/(1+x^4)dx

    =∫2/(x^2+1/x^2)dx

    =∫1/(x^2+1/x^2)[d(x+1/x)+d(x-1/x)]

    =∫1/(x^2+1/x^2)d(x+1/x)+∫1/(x^2+1/x^2)d(x-1/x)

    =∫d(x+1/x)/[(x+1/x)^2-2]+∫d(x-1/x)/[(x-1/x)^2+2)

    =∫[1/(x+1/x-√2)-1/(x+1/x+√2)]*1/(2√2)d(x+1/x)+√2/2*arctan[√2/2*(x-1/x)]

    =√2/4*(ln|x+1/x-√2|-ln|x+1/x+√2|)+√2/2*arctan[√2/2*(x-1/x)]+C

    =√2/4*ln|(x+1/x-√2)/(x+1/x+√2)|+√2/2*arctan[√2/2*(x-1/x)]+C

    故∫arctan(x^2)dx

    =xarctan(x^2)+√2/4*ln|(x+1/x+√2)/(x+1/x-√2)|-√2/2*arctan[√2/2*(x-1/x)]+C1