因为 (a+b+c)²≥0,当a+b+c=0时,等号成立
又,(a+b+c)²=a²+b²+c²+2ab+2bc+2ac≥0,
所以 2(ab+bc+ac)≥-(a²+b²+c²)=-9
所以 (a-b)²+(b-c)²+(c-a)²=2(a²+b²+c²)-2(ab+bc+ca)=18-2(ab+bc+ca)≤18+9=27
因为 (a+b+c)²≥0,当a+b+c=0时,等号成立
又,(a+b+c)²=a²+b²+c²+2ab+2bc+2ac≥0,
所以 2(ab+bc+ac)≥-(a²+b²+c²)=-9
所以 (a-b)²+(b-c)²+(c-a)²=2(a²+b²+c²)-2(ab+bc+ca)=18-2(ab+bc+ca)≤18+9=27