(1-cosα)/(1+sinα)-tanα
=(1-cosα)/(1+sinα)-sinα/cosα
=[cosα(1-cosα)-sinα(1+sinα)]/cosα(1+sinα)
显然分母大于0
分子=cosα-cos²α-sinα-sin²α
=cosα-sinα-(cos²+sin²α)
=√2(cosα*√2/2-sinα*√2/2)-1
=√2(cosαcosπ/4-sinαsinπ/4)-1
=√2cos(α+π/4)-1
锐角则0
(1-cosα)/(1+sinα)-tanα
=(1-cosα)/(1+sinα)-sinα/cosα
=[cosα(1-cosα)-sinα(1+sinα)]/cosα(1+sinα)
显然分母大于0
分子=cosα-cos²α-sinα-sin²α
=cosα-sinα-(cos²+sin²α)
=√2(cosα*√2/2-sinα*√2/2)-1
=√2(cosαcosπ/4-sinαsinπ/4)-1
=√2cos(α+π/4)-1
锐角则0