∫(1-->3) x/6 dx + ∫(3-->7/2) (2 - x/2) dx
= 1/6 · x¹⁺¹/(1 + 1) |(1-->3) + [2x - 1/2 · x¹⁺¹/(1 + 1)] |(3-->7/2)
= 1/6 · x²/2 |(1-->3) + (2x - 1/2 · x²/2) |(3-->7/2)
= 1/12 · (3² - 1²) + [2(7/2) - (1/2)(7/2)²/2] - [2(3) - (1/2)(3²)/2]
= 2/3 + 63/16 - 15/4
= 41/48
∫ xⁿ dx = xⁿ⁺¹/(n + 1) + C
∫(a-->b) f(x) dx = F(b) - F(a),F(x)是f(x)的原函数,即不定积分的结果