△=k²-4k+8=(k-2)²+4>0
所以是两个交点
y=x²+kx+k-2
则x1+x2=-k
x1x2=k-2
|x1-x2|=2√5
则(x1-x2)²=20
即(x1+x2)²-4x1x2=20
k²-4k+8=20
k²-4k-12=(k-6)(k+2)=0
k=6,k=-2
△=k²-4k+8=(k-2)²+4>0
所以是两个交点
y=x²+kx+k-2
则x1+x2=-k
x1x2=k-2
|x1-x2|=2√5
则(x1-x2)²=20
即(x1+x2)²-4x1x2=20
k²-4k+8=20
k²-4k-12=(k-6)(k+2)=0
k=6,k=-2