1.永远发散,因为 ln1 = 0
2.如果lim(x→+∞)f(x)= c,c 不等于0,设 c > 0
存在一个 N > 0,x > N 时,f(x) > c/2
∫(a到+∞)f(x)dx >
∫(a到N)f(x)dx + ∫(N到+∞)(c/2)dx ---> +∞
c < 0 同样证明.
1.永远发散,因为 ln1 = 0
2.如果lim(x→+∞)f(x)= c,c 不等于0,设 c > 0
存在一个 N > 0,x > N 时,f(x) > c/2
∫(a到+∞)f(x)dx >
∫(a到N)f(x)dx + ∫(N到+∞)(c/2)dx ---> +∞
c < 0 同样证明.