求Z=x^3-y^3-3xy的极值和极值点

1个回答

  • Z=f(x,y)=x^3-y^3-3xy

    分别对x,y求偏导:

    fx=3x^2-3y

    fy=-3y^2-3x.

    令fx=0,fy=0,可得x=0,y=0,或x=-1,y=1这2个驻点.

    然后求二阶偏导:

    fxx=6x,fxy=-3,fyy=-6y.

    x=0,y=0时,fxx=0,fxy=-3,fyy=0,(-3)^2-0>0,所以(0,0)不是极值点;

    x=-1,y=1时,fxx=-6,fxy=-3,fyy=-6,(-3)^2-(-6)^2