∫dx/[x√(x^2-1)]
=∫dx/[x*|x|*√(1-1/x^2)] 或x>0 =∫dx/[x^2√(1-1/x^2)]=-∫d(1/x)√(1-1/x^2)
=(|x|/x)∫dx/[x^2√(1-1/x^2)] =-arcsin(1/x)+C
=(-|x|/x)∫d(1/x)/√(1-1/|x|^2) x
∫dx/[x√(x^2-1)]
=∫dx/[x*|x|*√(1-1/x^2)] 或x>0 =∫dx/[x^2√(1-1/x^2)]=-∫d(1/x)√(1-1/x^2)
=(|x|/x)∫dx/[x^2√(1-1/x^2)] =-arcsin(1/x)+C
=(-|x|/x)∫d(1/x)/√(1-1/|x|^2) x