首先 二维
极坐标系统从原点(0,0)至(r0,theta0),并保持新旧的极轴平行.我们得到以下方程有关新坐标(r',theta')旧坐标(r,theta)的转换
r' = sqrt(r^2+(r0)^2-2rr0cos(theta-theta0),
theta' = arctan([r sin(theta)-r0sin(theta0)]/[r cos(theta)-r0cos(theta0)]),
r = sqrt((r')^2+(r0)^2+2r'r0cos(theta'-theta0),
theta = arctan([r'sin(theta')+r0sin(theta0)]/[r'cos(theta')+r0cos(theta0)]).
3维.转化牵涉坐标平移和旋转
x'=l1(x-x0)+m1(y-y0)+n1(z-z0)
y'=l2(x-x0)+m2(y-y0)+n2(z-z0)
x'=l3(x-x0)+m3(y-y0)+n3(z-z0)
其中x'y'z'坐标系统原点=(X0,Y0,z0)相对于XYZ系统原点= (0,0,0).l1,m1,n1; l2,m2,n2; l3,m3,n2 都是x',y',z' 和x,y,z 的方向余弦.