线性代数:证明可逆的矩阵?已知n阶方阵A、B、A+B均可逆,试证明A-1+B-1也可逆.
1个回答
A^-1+B^-1=A^-1(B+A)B^-1
所以(A^-1+B^-1)*[B(A+B)^-1A]=E
且A、B、A+B均可逆,
所以A^-1+B^-1也可逆,逆矩阵为B(A+B)^-1A
相关问题
线性代数可逆问题设A、B、C、D均为n阶方阵,证明 (1)分块矩阵P可逆的充分必要条件是A+B和A-B都可逆 (2)若A
线性代数证明问题设n阶矩阵A,B和A+B均可逆,证明A逆+B逆 也可逆,求出逆矩阵的值再证明(A+B)的逆
大学线性代数可逆矩阵设A,B均为n阶矩阵.证明:分块矩阵(A B)是可逆矩阵当且仅当A+B与A-B均为可逆矩阵B A
如果A,B是可逆矩阵,证明n阶方阵A,B的乘积AB也为可逆矩阵.
一道证明逆矩阵的题设A,B是N阶可逆矩阵,(A+B)也可逆,试证明 (A的逆+B的逆)也可逆 怎么证明啊~
证明:A.B为同阶方阵且均可逆,则AB也可逆,且(AB)-1=B-1A-1
A,B都是n阶矩阵,B,A-E可逆,且(A-E)^-1=(B-E)^T,证明矩阵A也可逆.
若A,B都是n阶可逆矩阵,证明:AB也是可逆矩阵,且(AB)^-1=B^-1*A^-1
AB均是n阶可逆方阵,证明(AB)^-1=B^-1A^-1
若n阶方阵A方阵可逆,且BB与A等价,证明B可逆