f-Mgsinθ-uMgcosθ=Ma (1)
mg-f=ma (2)
(1)+(2)得,mg-Mg(sinθ+ucosθ)=(M+m)a
a=[mg-Mg(sinθ+ucosθ)]/(M+m)
f=m(g-a)=Mg(1+sinθ+ucosθ)/(M+m)
f-Mgsinθ-uMgcosθ=Ma (1)
mg-f=ma (2)
(1)+(2)得,mg-Mg(sinθ+ucosθ)=(M+m)a
a=[mg-Mg(sinθ+ucosθ)]/(M+m)
f=m(g-a)=Mg(1+sinθ+ucosθ)/(M+m)