y=(sinx+cosx)/(sinxcosx+1)
一方面:
设t=sinx+cosx=√2sin(x+π/4)
∵x属于[0,π],∴x+π/4∈[π/4,5π/4]
∴sin(x+π/4)∈[-√2/2,1]
∴t∈[-1,√2]
另一方面:
(sinx+cosx)²=sin²X+cos²x+2sinxcosx=1+2sinxcosx
∴sinxcosx=(t²-1)/2
∴y=t/[(t²-1)/2+1]=2t/(t²+1)
t=0时,y=0
0
y=(sinx+cosx)/(sinxcosx+1)
一方面:
设t=sinx+cosx=√2sin(x+π/4)
∵x属于[0,π],∴x+π/4∈[π/4,5π/4]
∴sin(x+π/4)∈[-√2/2,1]
∴t∈[-1,√2]
另一方面:
(sinx+cosx)²=sin²X+cos²x+2sinxcosx=1+2sinxcosx
∴sinxcosx=(t²-1)/2
∴y=t/[(t²-1)/2+1]=2t/(t²+1)
t=0时,y=0
0