解题思路:先求出新多边形的边数,再根据截去一个角后的多边形与原多边形的边数相等,多1,少1三种情况进行讨论.
设新多边形的边数是n,则(n-2)•180°=2520°,
解得n=16,
∵截去一个角后的多边形与原多边形的边数可以相等,多1或少1,
∴原多边形的边数是15,16,17.
故选D.
点评:
本题考点: 多边形内角与外角.
考点点评: 本题考查了多边形的内角和定理,难点在于截去一个角后的多边形与原多边形的边数相等,多1,少1,有这么三种情况.
解题思路:先求出新多边形的边数,再根据截去一个角后的多边形与原多边形的边数相等,多1,少1三种情况进行讨论.
设新多边形的边数是n,则(n-2)•180°=2520°,
解得n=16,
∵截去一个角后的多边形与原多边形的边数可以相等,多1或少1,
∴原多边形的边数是15,16,17.
故选D.
点评:
本题考点: 多边形内角与外角.
考点点评: 本题考查了多边形的内角和定理,难点在于截去一个角后的多边形与原多边形的边数相等,多1,少1,有这么三种情况.