若n为大于1的自然数,求证:1/n+1+1/n+2+…+1/2n>13/24

2个回答

  • n为大于1的自然数

    可以用数学归纳法来证:

    (1)当n=2时

    1/(2+1)+1/(2+2)=1/3+1/4=7/12=14/24>13/24成立

    (2)假设当n=k时成立

    即:1/(k+1)+1/(k+2)+1/(k+1)+---+1/(k+k)>13/24

    那么当n=k+1时

    1/(k+2)+1/(k+1)+---+1/(k+k)+1/(2k+1)+1/(2k+2)

    =1/(k+1)+1/(k+2)+1/(k+1)+---+1/(k+k)+1/(2k+1)+1/(2k+2)-1/(k+1)

    >13/24+1/(2k+1)+1/(2k+2)-1/(k+1)

    >13/24+1/(2k+2)+1/(2k+2)-2/(2k+2)=13/24

    说明当n=k+1时也成立

    由(1)(2)可知不等式对于大于1的自然数都成立