利用复数的指数表示计算(-2+i/1+2i)的1/3次?

1个回答

  • (-2+i)/(1+2i)

    =(-2+i)(1-2i)/(1+2i)(1-2i)

    =(-2+4i+i+2)/(1²+2²)

    =5i/5

    =i

    =cos(π/2)+isin(π/2)

    ³√[cos(π/2)+isin(π/2)]

    =cos[(π/2+2kπ)/3]+isin[(π/2+2kπ)/3],k=0,1,2

    cos(π/6)+isin(π/6)=√3/2+i/2

    cos(5π/6)+isin(5π/6)=-√3/2+i/2

    cos(3π/2)+isin(3π/2)=-i

    (-2+i)/(1+2i)的三个立方根是√3/2+i/2,-√3/2+i/2,-i

    复数开方法则

    复数r(cosθ+isinθ)的n次方根

    n^√r•{cos[(θ+2kπ)/n]+isin[(θ+2kπ)/n],k=0,1,2,...,n-1