解题思路:(1)等量关系为:车辆数之和=20;
(2)关系式为:装运每种脐橙的车辆数≥4;
(3)总利润为:装运A种脐橙的车辆数×6×12+装运B种脐橙的车辆数×5×16+装运C种脐橙的车辆数×4×10,然后按x的取值来判定.
(1)根据题意,装运A种脐橙的车辆数为x,装运B种脐橙的车辆数为y,
那么装运C种脐橙的车辆数为(20-x-y),
则有:6x+5y+4(20-x-y)=100
整理得:y=-2x+20(0≤x≤10且为整数);
(2)由(1)知,装运A、B、C三种脐橙的车辆数分别为x,-2x+20,x.
由题意得:
x≥4
−2x+20≥4
解得:4≤x≤8
因为x为整数,
所以x的值为4,5,6,7,8,所以安排方案共有5种.
方案一:装运A种脐橙4车,B种脐橙12车,C种脐橙4车;
方案二:装运A种脐橙5车,B种脐橙10车,C种脐橙5车,
方案三:装运A种脐橙6车,B种脐橙8车,C种脐橙6车,
方案四:装运A种脐橙7车,B种脐橙6车,C种脐橙7车,
方案五:装运A种脐橙8车,B种脐橙4车,C种脐橙8车;
(3)设利润为W(百元)则:W=6x×12+5(-2x+20)×16+4x×10=-48x+1600
∵k=-48<0
∴W的值随x的增大而减小.
要使利润W最大,则x=4,
故选方案一W最大=-48×4+1600=1408(百元)=14.08(万元)
答:当装运A种脐橙4车,B种脐橙12车,C种脐橙4车时,获利最大,最大利润为14.08万元.
点评:
本题考点: 一元一次不等式组的应用.
考点点评: 解决本题的关键是读懂题意,根据关键描述语,找到所求量的等量关系.确定x的范围,得到装在的几种方案是解决本题的关键.