(1)证明:∵a n=2a n-1+2 n(≥2,且n∈N *)
∴
a n
2 n =
a n-1
2 n-1 +1
∴
a n
2 n -
a n-1
2 n-1 =1
∴数列{
a n
2 n }是以
1
2 为首项,1为公差的等差数列;
(2)由(1)得
a n
2 n =
1
2 +(n-1)•1=n-
1
2
∴a n= (n-
1
2 )• 2 n ;
(3)∵S n=
1
2 • 2 1 +
3
2 • 2 2 +…+ (n-
1
2 )• 2 n
∴2S n=
1
2 • 2 2 +
3
2 • 2 3 +…+ (n-
1
2 )• 2 n+1
两式相减可得-S n=1+2 2+2 3+…+2 n- (n-
1
2 )• 2 n+1 =(3-2n)•2 n-3
∴S n=(2n-3)•2 n+3>(2n-3)•2 n
∴
S n
2 n >2n-3 .