已知数列{a n }满足a 1 =1,且a n =2a n-1 +2 n (≥2,且n∈N * )

1个回答

  • (1)证明:∵a n=2a n-1+2 n(≥2,且n∈N *

    a n

    2 n =

    a n-1

    2 n-1 +1

    a n

    2 n -

    a n-1

    2 n-1 =1

    ∴数列{

    a n

    2 n }是以

    1

    2 为首项,1为公差的等差数列;

    (2)由(1)得

    a n

    2 n =

    1

    2 +(n-1)•1=n-

    1

    2

    ∴a n= (n-

    1

    2 )• 2 n ;

    (3)∵S n=

    1

    2 • 2 1 +

    3

    2 • 2 2 +…+ (n-

    1

    2 )• 2 n

    ∴2S n=

    1

    2 • 2 2 +

    3

    2 • 2 3 +…+ (n-

    1

    2 )• 2 n+1

    两式相减可得-S n=1+2 2+2 3+…+2 n- (n-

    1

    2 )• 2 n+1 =(3-2n)•2 n-3

    ∴S n=(2n-3)•2 n+3>(2n-3)•2 n

    S n

    2 n >2n-3 .