(1)
由x=1/(√2-1)化简得:x=√2+1;
设x+1=a;√x²+x=b;则有:
原式=[(a+b)/(a-b)]+[(a-b)/(a+b)]
=(2a²+2b²)/(a²-b²)
=2【(√2+2)²+(√2+2)²+√2+2】/【(√2+2)²-(√2+2)²-√2-2】
=(18√2+32)/(﹣√2-2)
=﹣2√2-14;
(2)
原式=【6√xy+3√xy】-【(4x/y)•√xy+6√xy】
=9√xy-6√xy-(4x/y)•√xy
=3√xy-(4x/y)•√xy
=【(3y-4x)/y】•√xy;