1
2+1
3+2+1
4+3+2+1
………………
n+﹙n-1﹚+……+1
n层总数S=n+2﹙n-1﹚+3﹙n-2﹚+……+n﹙n-n+1﹚
=﹙1+2+……+n﹚n-[2×1+3×2+4×3+……+n×﹙n-1﹚
注意公式1+2+……+n=n﹙n+1﹚/2
1×2+2×3+……+n﹙n+1﹚=n﹙n+1﹚﹙n+2﹚/3
S=n²﹙n+1﹚/2+n﹙n²-1﹚/3=﹙n³+3n²-2n﹚/6.
1
2+1
3+2+1
4+3+2+1
………………
n+﹙n-1﹚+……+1
n层总数S=n+2﹙n-1﹚+3﹙n-2﹚+……+n﹙n-n+1﹚
=﹙1+2+……+n﹚n-[2×1+3×2+4×3+……+n×﹙n-1﹚
注意公式1+2+……+n=n﹙n+1﹚/2
1×2+2×3+……+n﹙n+1﹚=n﹙n+1﹚﹙n+2﹚/3
S=n²﹙n+1﹚/2+n﹙n²-1﹚/3=﹙n³+3n²-2n﹚/6.