log25﹙3﹚=a,log25﹙4﹚=b,求log5﹙72﹚
1个回答
log25﹙3﹚=a ,log25﹙4﹚=b
log5(3)=2a,log5(2)=b,
log5(72)=log5(2^3 *3^2)
=3log5(2)+2log5(3)
=4a+3
相关问题
已知:log(5) 3=a,log(5) 4=b log(25) 12=?
求:(log2 125+log4 25+log8 5)(log125 8+log25 4+log5 2);
已知log3(4)=a,log3(5)=b 则log9(16/25)=
[log2 (125) +log4(25)+log8(5)][log125(8)+log25(4)+log5(2)
高中数学对数计算求值(log2 125+log4 25+log8 5)*(log125 8+log25 4+log5 2
(log(2)125+log(2)25+log(8)5)*(log(125)2+log(25)4+log(5)8)
求(log2 5+log4 0.2)(log5 2+log25 0.5)
log10是什么?log 75 - log 3 + log 4=log25+log3-log3+2log2=2log5+
已知log5(6)=a,log5(4)=b.用a,b表示log25(12).
log3[log4(log5a)]=log4[log3(log5b)]=0求a/b等于几?