AC=AB+BC,BE=BC+CE=BC-AB/2
故:AC·BE=(AB+BC)·(-AB/2+BC)
=-|AB|^2/2+|BC|^2+AB·BC/2=1
即:|AB|^2=AB·BC=|AB|*|BC|*cos(π/3)
即:|AB|=|BC|/2=1/2
AC=AB+BC,BE=BC+CE=BC-AB/2
故:AC·BE=(AB+BC)·(-AB/2+BC)
=-|AB|^2/2+|BC|^2+AB·BC/2=1
即:|AB|^2=AB·BC=|AB|*|BC|*cos(π/3)
即:|AB|=|BC|/2=1/2