证:(1)因点D、E为均为圆O上的两点,所以OD=OE,因此△ODE为等边三角形
故∠ODE=∠OED,又∠ADO=∠PED=90°
那么∠ADO+∠ODE=∠OED+∠DEP,即∠ADE=∠AEP;
又由于∠A为△ADE和△AEP公共角,因此△ADE和△AEP有两个角相等,
所以:△ADE∽△AEP
(2) 你第二题少了一个条件:∠B=90°,不然是做不出来的.
又∵△AOD∽△ACB
∴ OA/CA=OD/BC=AD/AB
∵AB=4,BC=3
∴AC=5
∴OD= 3/5×OA,AD=4/5×OA
∵△ADE∽△AEP
∴ AE/AP=AD/AE=DE/PE
AE=OE+OA=OD+OA=8/5OA,AP=AE²/AD=16/5×OA
∴OAPA=5/16.