f(x)=(-√3/2)sin2x,
f(a-π/8)=(-√3/2)sin(2a-π/4)=√3/3,
∴sin(2a-π/4)=-2/3,
∴f(2a)=(-√3/2)sin4a
=(-√3/2)sin[2(2a-π/4)+π/2]
=(-√3/2)cos[2(2a-π/4)]
=(-√3/2){1-2[sin(2a-π/4)]^2}
=(-√3/2)(1-8/9)
=-√3/18.
f(x)=(-√3/2)sin2x,
f(a-π/8)=(-√3/2)sin(2a-π/4)=√3/3,
∴sin(2a-π/4)=-2/3,
∴f(2a)=(-√3/2)sin4a
=(-√3/2)sin[2(2a-π/4)+π/2]
=(-√3/2)cos[2(2a-π/4)]
=(-√3/2){1-2[sin(2a-π/4)]^2}
=(-√3/2)(1-8/9)
=-√3/18.