在多面体中的运用:简单多面体的顶点数V、面数F及棱数E间有关系.V F-E=2 这个公式叫欧拉公式.公式描述了简单多面体顶点数、面数、棱数特有的规律
欧拉公式:简单多面体的顶点数V、面数F及棱数E间有关系
1个回答
相关问题
-
欧拉公式的证明过程谁知道欧拉公式:在多面体中:V(顶点数)+F(面数)-E(棱数)=2
-
十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.
-
十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.
-
十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.
-
十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.
-
十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.
-
若将多面体的顶点数用v表示,面数用F表示,棱数用E表示,则v,F,E之间的数量关系可以用欧公式,请出欧拉公式
-
十八世纪瑞士数学家欧拉证明了简单多面体中面数(f)、顶点数(v)棱数(e)之间存在的一个有趣的关系式,被称为欧拉公式.
-
十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.
-
伟大的数学家欧拉发现并证明的关于一个多面体的顶点(V)、棱数(E)、面数(F)之间关系的公式为______.