an=(1-2n)(1/2)ⁿ=(1/2)ⁿ -n/2^(n-1)
Sn=a1+a2+...+an
=(1/2)+(1/2)²+...+(1/2)ⁿ-[1/2^0+2/2 +3/2²+...+n/2^(n-1)]
令Cn=1/2^0+2/2+3/2²+...+n/2^(n-1)
则Cn /2=1/2+2/2²+...+(n-1)/2^(n-1)+n/2ⁿ
Cn -Cn/2 =Cn /2=1+1/2+1/2²+...+1/2^(n-1) -n/2ⁿ
Sn=(1/2)+(1/2)²+...+(1/2)ⁿ-[1+1/2+1/2²+...+1/2^(n-1) -n/2ⁿ]
=(1/2)ⁿ-(1 -n/2ⁿ)
=(n+1)/2ⁿ -1